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Abstrat't--The fluctuating relative motion of two solid particles or liquid drops in a turbulent gas flow is 
analysed, yielding an expression for collision rate as a function of the particle concentration and relaxation 
times and the turbulence intensity and scale. Unlike earlier theories, particles of intermediate size are 
included, having approach velocities neither well-correlated nor completely independent. 

I. INTRODUCTION 

Collisions between particles are likely to have a strong influence on the behaviour of a 
concentrated aerosol, especially where they result in agglomeration. In many situations, 
turbulence in the suspending gas will be the primary mechanism for relative motion between 
particles, for example in pneumatic transport or in gas cleaning equipment. Lack of a 
comprehensive theory for collisions in turbulent flow, and the difficulty of conducting reliable 
experiments, has meant that the phenomenon tends to be neglected, unlike deposition. 

While the equations for the development in time of the size distribution of an agglomerat- 
ing aerosol (Muller 1928; Drake 1972) may be solved numerically (e.g. Williams & Crane 1979), 
given the collision rates between any two sizes of particle and the probability of coalescence, 
evaluation of the collision rates has not been attempted for all relevant combinations of particle 
size and turbulence parameters. Collision rates are expressed by a collision coefficient Ct2 
(dimensions L~T -I) defined such that Ct:N~N: is the number of collisions in unit time between 
two sizes of particle having number concentrations NI and N2 (per unit volume). 

If the particles are sufficiently small to follow the turbulent motion exactly and be entrained 
completely by the smallest, energy-dissipating eddies (characterised by the Kolmogorov micro- 
scale), the collision rate, determined from the relative motion of two adjacent particles, is a 
function only of the local fluid velocity gradient. A collision coefficient C~: for this turbulent 
shear collision mechanism was first evaluated by Camp & Stein (1943), by analogy with 
Smoluchowski's (1917) pioneering work in laminar flows. East & Marshall (1934) introduced the 
concept of turbulent accelerative coagulation, considering the particles to be entrained in a 
"parcel" of fluid undergoing turbulent motion as a solid body; collisions then arise from the 
differing inertial response of unequal particles to the fluid motion. 

Saffman & Turner (1936), in a more rigorous analysis of raindrop growth, combined these 
two mechanisms and additionally accounted for gravitational effects, but still required the 
particle size to be less than the microscale and the particle relaxation time to be less than the 
characteristic timescale of the dissipating eddies. 

Their result, for two particles denoted by subscripts I and 2, is 

C,: = (~'/2)lt2(dj + d2)2[(! - (paJpe))"(r, -l"z) z x 1.3(e3/vc;) 'n + (1136)(d, + d,)Z(d vc)] It" [!] 

where the first and second terms on the r.h.s, represent the accelerative and shear mechanisms 
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respectively, r is the relaxation time of a particle of diameter d and material density pp ; ~ is the 
turbulent energy dissipation rate in the gas, of density pc and kinematic viscosity v~. 

Considering the shear mechanism only, Delichatsios & Probstein (1974) used simple 
mean-free-path concepts to obtain, for a monodispersion of particles smaller than the Kol- 
mogorov microscale. 

Ct., = 0.40 d 3 (~Ivo) I/" . [2] 

For this case.[l] reduces to a similar form, but with a constant of 1.67 (or 1.30 from an 
alternative derivation) instead of 0.40. (Although there appear to be cases of authors misquoting 
each other's results, there is general agreement that this constant is of order unity: the 
treatment by Levich (1962), giving a constant an order of magnitude greater, is believed to be 
physically doubtful.) 

With higher energy dissipation rates (10:-104W/kg, typical of industrial processes rather 
than atmospheric turblence) and consequently smaller and more vigorous dissipating eddies, 
approaching particles may no longer have well-correlated velocities; the larger particles, 
responding imperfectly even to the larger eddies, will tend to approach each other from 
separate eddies with random and independent velocities. Abrahamson (1975) evaluated a 
collision coefficient for this opposite extreme case, obtaing 

Ct: = 1.25(dt + dz)'(t,'i: + v~:) t/" [3) 

where c' is the r.m.s, particle velocity, related to r.m.s, fluid velocity u' by 

e ' =  u'(i + 1.5 TElu':)-':. [3] 

Equation [3] was estimated to be valid when 

d 2 > i 5 vc;u'"(pJp~,)l~. [51 

Few reliable experimental studies of turbulent agglomeration in pipes have been reported, 
and these are largely confined to the shear collision regime. Yoder & Silverman (1967) 
measured number concentrations in a near-mondisperse aerosol of sub-micron particles and 
deduced separate agglomeration and deposition coefficients, assuming them to be independent 
of particle size. A hydrosol of similar particles, again smaller than the turbulent microscale, was 
sampled by Delichatsios & Probstein (1974): analysis of the size distributions yielded a mean 
agglomeration coefficient in good agreement with theory (making use of a polydispersity factor). 
Attempts to repeat the experiment for particles larger than the microscale were unsuccessful 
because of break-up of agglomerates. Okuyama et al. (1978) adopted a similar approach, 
comparing a solution of the equation for evolution of the size distribution with data from a flow 
of submicron droplets in air. They found broad agreement with shear collision theory for 
smaller particles, but noted increased agglomeration with larger particles which was not 
inconsistent with a prediction using [I]. 

Lack of a theory or any relevant data for particles of intermediate size, which have 
partially=correlated velocities before collision, prompted the work described in this paper. The 
aim was to derive an expression for C,: for the accelerative collision mechanism, spanning the 
whole particle size range between the extremes represented by [I] and [3], and with particular 
reference to pipe flows. (Other collision mechanisms, resulting from Brownian motion, gravity, 
sound waves, etc., are not treated here.) 
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2. P A R T I C L E  MOTION IN T U R B U L E N T  FLOW 

The relative velocity between two adjacent particles is clearly a key determinant of the 
particle collision rate. Evaluation of the relative velocity of intermediate size particles is 
complicated by their unknown degree of velocity correlation. A relative velocity between two 
adjacent particles can be attributed to three effects: (i) existence of a fluid velocity gradient 
between the two particles (separation dependent): (ii) different inertial response of unequal 
particles to a common entraining eddy (separation independent): (iii)projection of large 
particles towards each other from uncorrelated parts of the flow (separation independent). 

Staffman & Turner (1956) show that effect (i) is negligible at particle separation r satisfying. 

r/R ~ 0.38pp(vGE)II4(dl - d:)l~ 

where the collision radius R = ~(dl + d:) and pG is the dynamic viscosity of the gas. For a pipe 
flow, it is therefore usually valid to assume that relative velocities are independent of separation 
for fiR ~ 0{1}; the error introduced for particles of equal size is unlikely to have a large effect 
on the development of a typical polydisperse system. If this condition is satisfied, then relative 
velocity can be evaluated at a hypothetical zero separation, and applied at small separation. It is 
therefore proposed to evaluate that relative velocity by extending the solution for the velocity 
of a single particle. The resulting value is then used in a kinetic collision model, and hence the 
collision rate is obtained explicitly. Discussing viscous interaction effects immediately prior to 
the collision of two deformable particles, Delichatsios (1980) suggests several dimensionless 
groups on which collision rate may depend, including the effect of the fluctuating pressure 
difference between opposite sides of the particles. However, such effects are neglected here, 
owing to the lack of any suitable experimental or analytical work on which to base the 
treatment. (As a first approximation, the expression for collision rate to be derived in this paper 
might be multiplied by an empirically-obtained collision efficiency.) 

2.1 Motion o.f a single particle 
The motion of a spherical particle in a turbulent gas is described approximately, in standard 

tensor notation, by 

+ ~ b ( ( u , - v , ) ~ - v V ' u ]  2 --'~ b[(pp/pG)- I] g~i~ [61 

where ui and v~ are the fluctuating parts of the gas and particle velocities, respectively, in the 
/-direction, x being the general coordinate; b = 3Od(2pp +p~), g is the gravitational ac- 
celeration, and 8,~ is the Kronecker delta ( = ! when g is in direction i, 0 otherwise). Neglect of 
the Basset "history" term implies b ~ i and the absence of high accelerations due to external 
forces. The validity of [6] is discussed at some length by Williams (1980): the most restrictive 
condition for its applicability to gas-particle flows is that the drag force on a particle is given by 
Strokes' law. 

Two well-documented (e.g. Hinze 1975) simplifications of [6] 
the last term on the r.h.s., or of the last two terms. These will be 
respectively. Their validity has been examined by a Monte 
trajectories in a three-dimensional, random gas velocity field, 
(1970) method: details are given by Williams (1980). In figure I, 
v'lu' of particle and gas r.m.s, fluctuating velocities, averaged over all three directions, are 
plotted for turbulence parameters roughly representative of fully-developed air flow in a 100 m 

are given by the omission of 
denoted here by [6a] and [6b] 
Carlo simulation of particle 
generated using Kraichnan's 
computed values of the ratio 
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Figure I. Ratio of particle and gas r.m.s, velocities from Monte Carlo simulations, using [6]. ©: [6a], 7:  
[6b]. A: and [6]. with non-Stokesian drag law O. Reeks (1977) ~. 

dia. ripe at Reynolds number l0 s, with pp = 1000 kg/m s. Two values estimated from Reeks' 
(1977) results are also shown for comparison. The agreement between results from [6], [6a] and 
[6b] indicated that the equation 

f,'i + t'ilr =btii + uilr [6b] 

is a valid approximation to [6] for d < 200 v.m under these conditions. This enables relation- 
ships between gas and particle energy spectra, obtained by wlrious authors on the basis of [6b], 
to be employed in the subsequent analysis. It also allows the gravitational coalescence 
mechanism, if this is important, to be treated separately from the turbulence mechanism which 
is the subject of this paper, it is expected that collisions caused by gravity may be neglected if 
Vr '~  u' where V.r is a particle terminal velocity: this condition becomes d,~20Ov.m ap- 
proximately, for the pipe flow referred to above. 

An indication of the applicability of any equation of motion including Stokes drag was given 
by a further Monte Carlo simulation, using an equation derived from Tchen (1947) equation in 
the same way as [6] but with particle drag coefficient Co expressed by lngebo's (1956) empirical 
relation (used for its convenient form rather than its accuracy). The point plotted for d = 
125 v,m illustrates the magnitude of the error introduced by the Stokes drag assumption. For 
these particular flow conditions, if particles with diameters above 50-100 p.m form only a small 
fraction of the total number, it is considered reasonable to use a collision model which 
necessarily relies on [6hi. 

A statistical description of the gas and particle motions is provided by their respective 
Lagrangian energy spectrum functions, Ec;t.ii{w} and Ei,t.=={w}, where w is the angular frequency. 
Where [6b] is valid, it is not difficult to show, e.g. Hinze (1975), that the fluid and particle energy 
spectra are related by 

Em.~i{w}lEc;,si{w} - [ I  + b"(wr) : ] / [ l  + (coT)"] 

[i + (w~')"] -I for pp ,> Pc;. 
[71 

Unfortunately, [7] is not immediately useful since it is difficult to measure the Lagrangian 
spectrum of the gas in a real flow. However, evidence exists (Weinstock 1976) which suggests 
that the Lagrangian and Eulerian "moving with the mean flow'" autocorrelation functions, 
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RL{Cb} and Rt-{$} respectively, are quite similar; that is, 

RL{$} ~ R~{$} m RE{$U'i/fi} 

4*2 

f = Fc;,{ak~} d(ak3 - I. 

It can be shown (Williams 1980) that 

where o = u~k~. Hence [7] becomes 

Eptii{oJ} --- [ au~l( l + oa2"r2)]Fi;ii{aki}. [8] 

The I-D wavenumber spectrum of the gas can be approximated by various empirical forms, 
of which two will be considered here. It is assumed that the presence of particles does not 
appreciably change the shape of the spectra. Damping of the high-wave number fluctuations by 
a dispersed phase (with a consequent reduction in u' and e) is a well-known phenomenon (e.g. 
AI Taweel & Landau 1977), which is likely to become significant when the particle volume fraction 
exceeds about l0 -4 in a typical gas-particle flow. This could therefore be a rather 
restrictive assumption, since collision rates (CI,.NtN2) would be expected to be greatest when 
the particle concentrations N are highest. There is, however, an opposite effect, turbulence 
augmentation, if the particles are large enough to have a significant gravity-driven mean slip 
velocity relative to the gas (e.g. Theofanous & Sullivan 1982). As yet, insufficient data are 
available to permit a better representation of Fo~ than expressions for single-phase flows. 

where a is the pipe radius, and 

where 

RE{@} -- (u,{t}ui{t + @})[u'i 2. 

= [0 EEii{t~} COSW~ dtolu~ 2 • 

Time and time delay are denoted by t and ~ respectively, and a is the local mean gas velocity. 
The corresponding integral time scales T, defined by T = f~R{cb} d~, are related by 

TL --- T~ = TEa~u; = Ll /u;  

where L f is the longitudinal integral space scale. 
Recalling that the autocorrelation function and i -D Euledan energy spectrum are cosine 

Fourier tansform pairs, it can be seen that 

The non-dimensional wavenumber spectrum Ft;=~(ak3 is now introduced, referred to an obser- 
ver moving with the mean velocity a. Referring to a pipe flow. it is defined by 

Ft;i~{aki} = Ec;.{ki}l( au;:) = ~Ec;r.ii{to}/( au;:) 
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The simplest empirical description of the spectrum characterises the turbulent flow by two 
parameters, the r.m.s, fluctuating velocity u'~ and the longitudinal scale L I. It is written 

F~{ak~} = (2/~')(L//a)/[I + (L/a):(ak~):] [9] 

which corresponds to an exponential form of the longitudinal space correlation coefficient of 
velocity, i.e. 

f{xi} = (ui{xi}ui{xl + Xl})lu;: = exp -{x,/LI}. 

where x and X denote distance and separation respectively. 
To model the small scale turbulence, it is necessary to introduce a further parameter, the 

microscale 1 I, defined by 

If = u'(15v/~) l/: . 

Noting that the space correlation is parabolic for small separation (Hinze 1975), i.e. 

[{X/} = 1 - (xJll): for X~ '~ I1, 

it can be shown (Williams 1980) that a more accurate form of the wave-number spectrum is 

Fc,,{akl} = (2/w)(yl[y - l])[(Lf/a)/[l + (L11a)Z(ak,) 2] - (L11a)l[y 2 + (Lfla)Z(ak,)2]] [10] 

where 3' = 2(Lf/lt)-'. 
Now the mean square particle fluctuating velocity is given by 

v,- = v;  = E ~ d , , , I  d~,. 

Introducing the dimensionless particle relaxation time 

0 = ¢ul/L/( = T/TL) [I ll 

and substituting from [8] and [9], 

r7 = u;:/(I + 0). [121 

which has the same form as the expression obtained by Levins & Glastonbury (1972). 
Similarly, [8] and [10] give 

• p ~.J  

v; = u~'[y/(y - 1)][(1 + 0) -t - ( I  + y0)-%/]. 

Observing that ~ is typically of order 10"--- 10 ~ (Lawn 1970), it can be seen that the simple 
form of the wavenumber spectrum, [9]. and the more precise form, [lO], give almost identical 
values of particle r.m.s, fluctuating velocity. This behaviour may be expected since particle 
trajectories are mainly determined by the large-scale (low wavenumber) fluid motion, which is 
least affected by the presence of the particles. The r.m.s, fluctuating velocity of a single particle 
will therefore be calculated from [12]. 

2.2 Relative motion of two particles 
The relative velocity w{t} between two particles with zero separation, at position x at time t, 
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is given by 

<w~{t}> = v~, * v~, - 2(v,,{x. t}v:,{x, t}) [131 

where ( ) denotes the ansemble average, equal to the time-mean average for stationary. 
homogeneous turbulence. Therefore calculation of w~ requires the evaluation of the velocity 
correlation of two coincident particles. 

Integrating [6] once gives (Panchev 1971) 

1: 

t',{x, t} = bu~{x, t} + [2(pe - p~)l(2pp +pc)l(llr) fo u~{x. t - d,} exp{ - 6/r} dd, [14] 

where u,{x, t} is the velocity of the gas surrounding a particle at position x at time t. For 
pp ~, p~, the first term on the r.h.s, can be neglected when the particles are not too large (e.g. 
d,~0(103)~m for the pipe flow referred to in connection with figure I). while the factor in 
square brackets in the second term tends to unity. 

Observing that particle trajectories over distances of the order of their collision radius will 
be almost straight and substituting a suitable expression for the fluid velocity covariance 
function, the following equation, derived in the Appendix. is obtained for the particle velocity 
correlation: 

<vte{x,t}w_i{x,t}>=(rtTz) -I ~ E(~,,{k,} f ' f  Rt.{0 - ~} exp{- (~/r,) 

- (6/r,.)} cos{k,w,{t}(O + d))/2} dO dd~ dk,. [151 

2.3 Solutions for relative velocity 
Small particles. Provided that one of the particles satisfies the condition 0 ,~ I, the argument 

of the cosine term in [15] is small for all non-negligible values of the integrand. Thus, [15] 
becomes 

(Vl,{,,. t}v:,{,,, t}> = . : ( . i . : ) - '  eLlq.-, } 

Substituting a form of RL corresponding to the simple wavenumber spectrum [9] gives 

from which 

(vi,{x. t}v,,{x, t}> '" = u :[01 + 0., + 2010,.]/[(0t + 0.,)(I + 01)(l + O,.)], 

(w~{t}yu~: = ( 0 t -  0,3:/[(0, + 09(1 + 0,)(i + 0:)1. [161 

Alternatively, substituting a form of RL corresponding to the more exact wavenumber spectrum 
[ 10] gives 

• ,, 3, (01 - 0.,)" [ ! I ] 
(w;{t})lu; = 3' _ 1 0"l +~',. (1 + 0t)(I + 0,.) (1+ 3,0,)(! + 3,0:) ' [171 

Equations [16] and [17] may be compared with the results of Scaffman & Turner (1956) which, 
for the accelerative mechanism can be written 

(w~{t}]/ui" = 387 (O, - O.,)" [18] 
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using Lawn's (1970) pipe flow data to relate the small and large length scales, for air at 
atmospheric pressure. This comparison is shown graphically in figure 2: in addition, all 
equations give (w~{t}) -= 0 for 0, = 0:. 

As expected, [16] and [17] are identical for not-too-small particles, but diverge appreciably 
for very small particles. The good agreement between [17] and [18] for very small particles is 
particularly encouraging: bearing in mind that (w~{t}) cannot exceed 2u~:. the validity of the 
Saffman and Turner result for not-too-small particles is dubious. 

The predicted behaviour for very dissimilar particles (large values of 0,/0:) is also as 
expected. Clearly. a large particle has a small fluctuating component of velocity, whereas the 
fluctuating velocity of a small particle is roughly u~. Their mean square relative velocity is 
therefore approximately u',:. which is indeed exhibited by [16] and [17]. 

Large particles. When one of the particles satisfies the condition 0 ,> I. the integrand of [15] 
is negligible unless 6 ~ O. Substituting the simple form of the wavenumber spectrum and the 
corresponding form of RL. [15] becomes 

<r,,{x. t}t':,{x, t}> = 6",~':)-' ".1,|~ ' " (-IrOu ," L//( I + k~L~) 

× f, j f e x p l  - v' + r z.') - I6 - c b l l T , }  dk,. 

Substituting the r.m.s, value of w,{t} assuming uncorrelated velocities in the cosine argument, it 
can be shown (Williams 1980) that 

(w~{t})lu',:=(l+O,)-'+(l+O.)-'-4[O,+O:+O,O:{(l+O,)='+(l+O:)-t}'/:] "'. [19] 

It is pertinent to compare [19] with the relative velocity assuming independent approach 
velocities (Abrahamson 1975). This comparison is made in figure 3. As expected, the curves are 
identical for very large particles, but diverge for not-too-large particles. 

10, r 

'.i 

10 "~ 
10 "~" 10 ":~ 1 

(0~ oz) vz 

Figure 2. Mean square relative velocity (w:,) of  two particles at zero separation when 0~ or 0: .~ I. -, [17]: 
. . . .  . [ 1 6 1 : - - - .  [181. 
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Figure 3. Mean square relative veloci ty (w])  of two particles at zero separation. - ,  [20], - - - .  [19] (where 
different from -):  . . . .  , [16] (where different from -). - - - - ,  Independent appraoch velocities. 

Universal solution. Equation [16], for small particles (assuming the simple form of the 
wavenumber spectrum), is also plotted on figure 3. It can be seen that, for unequal particles, the 
sets of curves for small and large particles show good compatability in the region 0 = 0(I). It is 
therefore reasonable to seek a universal solution applicable over all 0, which reduces closely to 
[16] and [19] for small and large particle respectively. Such a solution is 

2 t2 (w,{ t ) ) / . ,  == {(e, + 0: ) - -  40,02[(I + o, + o;)(l + e,)- '( I  + o;)"]'~:}/{(e, + 02)(I + e,)(I + 02)} 
[201 

which is also plotted in figure 3. It is seen to coincide very closely with [16] and [19] over the 
whole range of (0102) u" and to provide the desired relationship for the region (0,02) ~12 = 0(I). 

3. PARTICLE COLLISIONS 
The relative velocity between two particles has been obtained above, for small separation of 

the order of the collision radius R. This result is now used to calculate the particle collision rate. 
The collision process has been divided into two separate phases; the rate of approach is first 
calculated using diffusion theory, then the outcome of the collision event is evaluated using a 
kinetic model. 

The reason for this division is that a non-zero approach flux of particles relative to a 
"target" particle requires a non-zero concentration gradient. This gradient will be appreciable 
for distances from the "target" not much greater than R. Clearly, this distinction is irrelevant 
for large particles, whose trajectories are determined at large separation. However, the effect of 
non-uniform concentration at small separations is appreciable for two small particles. 

3.1 Diffusional approach 
Two particular, but arbitrarily chosen, particles are considered. It is required to calculate the 

probability of these particles approaching to a separation < ro in unit time. The value of ro must 
be small enough that the particles' relative velocity at separation ro does not differ appreciably 
from its value at hypothetical zero separation, but sufficiently large that the particle concen- 
tration is uniform for r > ro. These are clearly conflicting requirements, but values of ro in the 
range 3R-5R represent a reasonable compromise. 

Now, if the particles have separation r( > r,) at time t, their separation will be less than ro at 
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time t + ~t if their relative velocity along the line of centres, w, .  exceeds (r-to)/St. The 
probability of this is 

~:-,,)/a 6{w,} dw, 

where d,{w,} is the probability density of relative velocity w,. Assuming that this is Gaussian. 
with variance w','. so that 

6 { w , . }  = [ ( 2 r r  ' I :w~ ]  - ,  exp{ - !wi/w',"}. 

the probability of the particles approaching to within ro in unit time is given by 

, i m [ / f , 1 4 , ' r r : f  ~ ~{w,}dwrdr] ' :" ' =(8rr) ro , , .  
,~t ~ 4 l  q J ( r -  r~l)/ ~t  

Hence the flux Q of particles to within r, of a "target" particle is 

Q = (Srr)'/:r~w'N. [21] 

The same result was obtained, from different reasoning, by Abrahamson (1975). 
It is further assumed that w, is isotropic and that the r.m.s, relative velocity w', along the line 

of centres equals that in an arbitrary direction, w~. Saffman & Turner (1956) have shown that 
this anomaly introduces only a small error into the proportionality constant for the collision 
rate. Allowance for anisotropy of the relative motion is beyond the scope of the present work. 
so the possibility of significant error close to the wall in a pipe flow. for example, must be borne 
in mind. 

3.2 Kinetic collision model 
It is required to calculate the collision probability of a pair of particles which have 

approached to within a separation r, by diffusion. An adequate model for the subsequent 
particle motion is suggested by observing that the velocity of a particle at time t is almost 
independent of its velocity at time to if t - to'> r, while its velocity is roughly constant over an 
interval of time < r. Denoting one particle as the target and the other as the projectile, this 
model makes the assumption that the trajectory of the projectile relative to the target can be 
approximated by straightline segments of time duration T, =(r|r.,) ~1'. and that consecutive 
trajectory segments are independent. In time T,, the r.m.s, displacement of the projectile relative to 
the target is T,w;, so the average length of each trajectory segment is s = 3U"w;T, which can be 
written in dimensionless form as 

sIR = (2/3)'I'[(pdpG)(u;LIIvG)]IJ:[(O,O,)'/:/(O112 + O'a)]w~lu~. [221 

with reference to [11]. 
The probability density of the particles' separation r' at time t will be denoted by p{r', t}. 

During the interval {t. t + T,}. one of three things will happen: either the particles will collide, or 
their separation will increase to more than to, or their separation will remain less than ro. 
Williams (1980) has shown that the probability of collision during {t. t + T,} is 

![I - {I - (Rlr'):) 'r'] for r' < (R" + s") '/" , 

[R: - ( r ' -  s):]l(4r's) for (R" + s') I/: < r' < r + s 
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and 

0 for r ' > R + s .  

Also. the probability density of separation at time t + T, given separation r' at time t. is 
given by 

p{r. t + T,: r', t} = r/(2r's) for Is - r' I < r < s + r ' ,  

from which 

a¢  

p{r.t + T,}= fo p{r,t + T,;r',t}p{r',t}dr'. 

Hence. the probability of separation exceeding ro at time t + 7", is 

f,] p{r, t + T,} dr. 

It is now possible to evaluate probabilities of the different outcomes at successive instants 
using a time-marching method on a computer. This gives the collision probability of an arbitrary 
pair of particles which approach to within ro of each other, P{ro}. These computations have 
been performed for a range of values of s and for ro = 3R and 3R. Noting from [21] that the rate 
of diffusional approach to separation r. is proportional to r~, it is expected that P{ro} should 
vary inversely with ~ since the final collision rate should be independent of r~. Accordingly, 
results of the kinetic model are plotted in the form (rolR)"P{ro} in figure 4. 

It can be seen that results for the two values of ro agree reasonably well for not-too-small 
values of siR (i.e. for all but the smallest particles). Also, for large s/R, the collision probability 
approaches the value assuming uniform concentration, as used by Saffman & Turner (1956). 
For computational convenience, a simple empirical formula for P{r0} has been fitted to the 
results; this is 

- ,  _|  ! 

P{ro} =(2/Tr)(Rlro)'tan [~(slR)']. [23] 

3.3 Complete collision model 
The probability Q{r0} of two particular, arbitrarily chosen particles approaching to within a 

separation ro in unit time has been derived in section 3.1. In section 3.2, the probability P{ro} of 

¢..'~ 

0.5 

.... ~ .... 

I I 
$ 10 

s/R 

Figure 4. Collision probability P{ro} of two particles with separation ro as a function of relative inertial path 
length s. Computed: rMR -- 3~Q. 50. -. [23]: . . . .  , without kinetic model. 
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two such particles colliding has been evaluated. The collision coefficient is then given by 

C,,. = Q{ ro }P { ro } lN  

. [ (8¢r ) ' / "R ' -w3[ ( ro /R)"P{ ro} ] ,  [.,4] 

using eqn. [21] and [23]. When (ro/R):P{ro}--, I, i.e. when the diffusionai collision model alone is 
applicable, [24] has the same form as [3], but with w' evaluated differently. In terms of 
dimensionless relaxation time 0, [24] may be written 

C,: ~ [(87r)"~(1814)vaLf(palpp)(w;lu;)(Ol I: + 0~':):] 

x [(2/w) tan-'{( 113)(ppIpa)(u ~Lrl va)( w'J u ',):o, 0:1(0 ~,~" + o ~,z)z}] [25] 

with (w;/u;) given as a funciton of 0 by [20]. Figure 5 illustrates the effect of introducing the 
kinetic collision model, showing that the predicted collision rate between particles of equal size 
falls sharply below that calculated from the diffusion model alone when (0,0:)": falls below 
about 10 -'. For unequal particles, as the difference in size increases, this reduction in collision 
rate becomes operative at decreasing values of (0,0,)':. 

In figure 6, C,, is plotted for various particle size combinations for a particular pipe flow. 
Also shown, withing their ranges of validity, are the collision coefficients calculated from the 
theories of Saffman & Turner (1956) and Abrahamson (1975), which are somewhat higher than 
those predicted by the present theory. This results from the entirely diffusional approach of 
Saffman & Turner, equivalent to (ro/R):P{ro}=l for all sizes, and from Abraham- 
son's use of the parameters of the small-scale turbulence to calculate particle fluctuat- 
ing velocities. It should be remembered that both the present theory and that of Abrahamson 
make use of results derived from the Tchen equation with the assumption of Stokes' drag law, 
so neither is strictly valid for d > 100 ~.m approximately, the lower limit [5] for Abrahamson's 
independent velocity model. In this range, Figure 6 serves merely to compare the two theories. 

The predicted influence of turbulence intensity and scale may be judged from the slopes of 
the curves in figure 6; for example, a doubling of turbulence intensity, which doubles the value 
of 0 for a given drop size and turbulence scale, can increase the collision rate by an order of 
magnitude. In practice, estimation of the appropriate values of u' could be subject to 
considerable uncertainty; only recently have unbiased measurement techniques been developed 
for the continuous phase in the presence of the dispersed phase (e.g. Loureng:o & Riethmuller 
1982). However, a simple correction to the single-phase value might be employed, such as that 
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Figure 5. Ratio of collision coefficients Ciz with and without inclusion of kinetic model. 
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Figure 6. Collision coefficient C~: between particles of diameter d~ and d: for pipe flow with u; = I m/s. 
Lf =50ram, pr/pc =850 s,o = 15x 10-~mZ/s (e.g. water drops in air in a 100ram dia. pipe at Reynolds 

number I()~. o. [25]: . . . .  . Saffman & Turner (1956): - - .  Abrahamson (197.~). 

developed by Laats and Frishman, quoted by Delichatsios (1980) which depends only on P ~ l p c ;  

and particle volume fraction. 
Use of the present theory for prediction of particle or droplet coalescence is, of course, 

dependent on knowledge of the outcome of each collision (coalescence. perhaps followed by 
break-up, or bouncing). Prediction of coalescence efficiency is beyond the scope of this paper: 
however, assuming a value of unity. Crane & Williams (1981) have incorporated the collision 
model into a two-dimensional numerical method for predicting the evolution of a droplet size 
spectrum in a turbulent pipe flow. A turbulent deposition model (Williams & Crane 1981) was 
also included. In the absence of any suitable data, an experiment was carried out to provide a 
test case (Ow 1980; Williams 1980). Qualitative agreement with experiment was obtained (Crane 
& Williams 1981), but the extent of uncertainties in various parameters required by the model, 
and of the experimental errors, means that improved measurement techniques will be required 
for a more precise verification of the theory. (A notable experimental difficulty is in obtaining 
sut~ciently high particle concentrations N for the rate of coalescence, roughly proportional to 
N:, to exceed the rate of turbulent deposition, roughly proportional to N, by an amount 
sufficient for errors in prediction and measurement of deposition not to mask the effects of 
coalescence). 

4. CONCLUSIONS 

By relating the fluctuating velocity of a particle to that of the gas and hence evaluating the 
fluctuating relative velocity between two given particles, the probability of close approach of 
the particles in a given time has been calculated, in terms of the particle concentration, particle 
relaxation times, turbulence intensity and scale. A kinetic collision model then yields the 
probability of collision. 

The resulting'analytical expression for collision rate spans the intermediate size range 
between small particles, having well-coorelated approach velocities, and large particles whose 
approach velocities are independent. At these two extremes, the present collision model 
represents an advance on earlier theories by allowing for non-uniform concentration of small 
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particles at small separations and, for large particles, being based on the parameters of 
the large-scale turbulent motion rather than those of the smallest, energy-dissipating eddies. 

Further development of the model, to enhance its applicability to larger particles, will 
include the addition of gravitational coalescence (or the equivalent mechanism in a centrifugal 
force field). Removal of the Stokesian drag restriction will present a greater problem and could 
require a considerable amount of fundamental work on the relationship between gas and 
particle energy spectra. For small particles, inclusion of the turbulent shear mechanism in the 
expression for C~: would be worthwhile. 
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APPENDIX 
Evaluation of velocity correlation term in [12] 

Using [14] with pp ~, Pc, the velocity correlation of two coincident particles is 

<o,I, ,I o I, ' fo f<u ,I,,, l,-0  x ,,> 

exp{ - (0/T0 - (d~/¢,)} dOdd~ [Ai] 

where u{t' ;x, t} denotes the velocity at time t' of the fluid surrounding the particle which will be 
at x at time t. The integrand of JAIl becomes small for ~, ~, ~-i or d~ ~' 1-,. Since the velocity of a 
particle cannot change appreciably over times much less than its relaxation time ¢, the fluid 
velocity correlation (ut~u,j) may be approximated by 

(uzi{t'; x, t}u2i{t"; x, t}) ~ (ui{x + vzi{x, t}(t - t')i, t'} U~{X + v2~{x, t}(t - tDi, t"}) 

= (ui{x, t '}ui{x + w,{t}(t  - ~ [ t '+  t ' ] ) i ,  t"}).  [A2] 

A commonly-used empirical form of this covariance function (e.g. Kraichnan 1970) is 

=¢ 

(u,{x, t'}ui{x + ri, t"}) = R~t '  - t"} fo Eli{k,} cos{k,r} dki. [A3] 

R~ is the longitudinal Eulerian "moving with the stream" time correlation function, which will 
be set equal to the Lagrangian autocorrelation RL (see section 2. I). 

Substituting [A2] and [A3] into [All, [15] is obtained. It should be noted again that a 
hypothetical zero separation between fluid elements is being considered, rather than a separa- 
tion of ~(dl + d,) (for two particles in contact); this is consistent with the assumption that the 
r.m.s, relative velocity of two particles is independent of their separation when the separation is 
of the same order of magnitude as the collision radius (second paragraph of section 2). 


